CHEM1612 Problem Sheet 5 (Week 6)

Work through the ChemCAL module "Acids and Bases".

1. A solution prepared by dissolving 0.30 g of polyacrylamide in 100 mL of water has an osmotic pressure of $8.3 \times 10^{-5} \mathrm{~atm}$ at $25^{\circ} \mathrm{C}$. What molar concentration of glucose would be isotonic with this solution?
2. Rank the following solutions in order of increasing osmotic pressure:

$$
\begin{array}{lllll}
1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4} & 1 \mathrm{M} \mathrm{HCl} & 0.5 \mathrm{M} \text { glucose } \quad 0.5 \mathrm{M} \mathrm{CaCl}_{2} & 0.5 \mathrm{M} \mathrm{NaCl}
\end{array}
$$

3. A solution is prepared by dissolving 1.00 mg of an unknown protein in 1.00 mL of water. The osmotic pressure of the solution was measured to be 95 Pa at $25^{\circ} \mathrm{C}$. What is the molecular weight of the protein?
4. Sea water from the Gulf of Mexico contains approximately 59 g salt per 1000 g water. Given the cryoscopic constant of water is $1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$, at what temperature would this water freeze?
5. Lactic acid $\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}\right)$, a monoprotic acid, is a waste product that accumulates in muscle tissue during exertion, leading to pain ("cramp") and a feeling of fatigue. In a 0.100 M aqueous solution, lactic acid is 3.7% dissociated. If the equilibrium concentration of H^{+}ion is $x \mathrm{~mol} \mathrm{~L}^{-1}$, write the equilibrium expression for K_{a} in terms of x and thus work out the equilibrium concentrations, the value of pH and K_{a} for lactic acid.
6. Give the concentration of hydrogen ions present and hence calculate the pH of each of the following water solutions:
(a) hydrochloric acid (0.14 M)
(b) nitric acid $(0.0025 \mathrm{M})$
(c) sodium hydroxide $(0.048 \mathrm{M})$
(d) barium hydroxide $\left(3.7 \times 10^{-3} \mathrm{M}\right)$
7. In a titration experiment, 50.0 mL of 0.100 M HCl is reacted with NaOH .
(a) Calculate the pH when the following quantities of 0.100 M NaOH have been added:
(i) 0.0 mL (initial pH)
(ii) 25.0 mL
(iii) 45.0 mL
(iv) 50.0 mL
(v) 55.0 mL
(vi) 75.0 mL
(b) Using the calculated values, plot the pH curve for the titration.
